

Stage de recherche

CLASSIFICATION DES SUPERNOVÆ À L'AIDE DES INDICATEURS SPECTRAUX

Auteur : Manuela RAIMBAULT

Maître de stage : Emmanuel GANGLER

Dates du stage : du 5 septembre 2011 au 16 décembre 2011

Raison sociale de l'entreprise : CNRS

Adresse : Campus des Cézeaux - 24, avenue des Landais - 63 171 Aubière Cedex

Accompagnateur ECN : Josep PINYOL VIDAL

Remerciements

Je souhaite en premier lieu remercier Emmanuel GANGLER, pour ses qualités d'encadrant, de pédagogue, mais aussi pour la bonne ambiance dans laquelle s'est déroulé mon stage, ponctué par une juste dose de moments de divertissements. Il a su se rendre disponible quotidiennement et m'a régulièrement fixé de nouveaux objectifs afin que je ne sois jamais en manque de travail.

Outre l'enrichissement que j'ai pu tirer de ce stage du point de vue apprentissage (Python, méthode de travail, approfondissement de la connaissance des supernovæ...), j'ai apprécié le fait que mon travail apporte une réelle contribution à la collaboration.

J'ai également pu m'ouvrir à la vie des labos en prenant part aux différents séminaires, aux visioconférences et en assistant à l'habilitation à diriger les recherches d'Emmanuel.

Enfin, je souhaite remercier la Société d'Astronomie de NANTES, sans laquelle je n'aurais pas rencontré Emmanuel et par suite, pas réalisé ce stage, que j'ai beaucoup apprécié, à tous points de vue.

Cadre de ce stage

Ce stage, réalisé au cours d'une année de césure en école d'ingénieur, s'est déroulé sur une période de 15 semaines. Il correspond à un niveau intermédiaire entre M1 et M2. L'objectif a été de fournir à la collaboration SNFactory un code python qui sélectionne les supernovæ de manière plus précise, dans le but de distinguer des sous-catégories.

Table des matières

Ι	The	éorie et contexte scientifique	5					
1	Con	Contexte scientifique						
	1.1	1 Aperçu historique et classification des supernovæ						
		1.1.1 Classification des supernovæ	6					
	1.2	Chandelles standard : supernovæ de type Ia	8					
	1.3	Module de distance	8					
	1.4	Spectres non corrigés du module de distance	9					
2	Le p	rojet SNFactory	10					
	2.1	Objectifs	10					
		2.1.1 Principe de l'expérience SNFactory	10					
	2.2	Observations et prises de données	11					
		2.2.1 Recherche de SN Ia	11					
		2.2.2 Suivi spectrophotométrique avec l'instrument SNIFS	11					
		2.2.3 Réduction de données	12					
		2.2.4 Étalonnage du CCD	12					
		2.2.5 Du CCD au cube étalonné puis aux spectres étalonnés en flux	13					
3	Cha	Chandelles quasi-standard et indicateurs spectraux						
	3.1	Indicateurs spectraux	13					
	3.2	Indicateurs spectraux : résultats antérieurs						
		3.2.1 Largeurs équivalentes	14					
		3.2.2 Vitesses de raies	14					
П	Dé	éveloppement d'une méthode de sélection des supernovæ	18					
4	. .		10					
4		ies supernovæ	10					
	4.1		18					
	4.2	Selection des supernovæ	18					
5	Erreurs et covariance							
	5.1	Calcul des distances	19					
6	Déte	Détermination des aggrégats 2						
	6.1	Aggrégat 1	20					
	6.2	Aggrégat 2	21					
	6.3	Aggrégat 3	22					
	6.4	«Aggrégat» 4	22					
7	Ana	Analyse en Composantes Principales (PCA)						
	7.1	Principe	24					
	7.2	Valeurs et vecteurs propres	24					

Α	Ann	exes	27
	A.1	Tableau récapitulatif des 132 SN	27
	A.2	Graphes des 10 indicateurs les uns en fonction des autres	29
	A.3	8 spectres repérés lors des scans visuels	34

Première partie Théorie et contexte scientifique

1 Contexte scientifique

La cosmologie observationnelle repose sur quatre domaines :

- l'étude des oscillations acoustiques de baryons (BAO);
- l'étude du fond diffus cosmologique (CMB);
- l'étude des lentilles gravitationnelles faibles (weak lensing);
- l'étude des supernovæ de type Ia (SN Ia).

On utilise ces dernières comme indicateurs de distance depuis la fin des années 1990. Cependant, les incertitudes systématiques liées à la qualité des échantillons de SN Ia proches restent un facteur limitant sur la précision des mesures actuelles. C'est dans le but de réduire ces incertitudes que le projet *Nearby Supernovæ Factory (SNFactory)*, à l'aide d'un instrument spectro-photométrique dédié à l'observation des SN Ia (*SNIFS pour Supernovæ Integral Field Spectrograph*), a collecté depuis 2004 plus de 3000 spectres de près de 200 SN Ia proches. Leur proximité (redshift compris entre 0,03 et 0,1 soit 10 milliards d'annéeslumière) fournit un flux important qui permet la dispersion dans un réseau.

On a ainsi recueilli le spectre de l'objet sur une période de deux mois autour de son maximum de luminosité.

Une supernova de type Ia est une étoile qui explose après réamorçage des réactions nucléaires en son sein lorsqu'elle approche de la masse critique de Chandrasekhar, par accrétion de matière de son compagnon. Elle devient alors aussi brillante que des milliards d'étoiles. Les supernovæ sont importantes pour la compréhension de la galaxie hôte. En effet, elles chauffent le milieu interstellaire, elles y déversent les éléments lourds et accélèrent les rayons cosmiques.

Les observations sont basées sur leur courbe de lumière, leur luminosité maximale et leur spectre, ce qui permet de classer les supernovæ.

1.1 Aperçu historique et classification des supernovæ

L'explosion d'un astre en supernova est un phénomène cataclysmique et très énergétique, rayonnant un flux lumineux parfois aussi intense que celui de la galaxie hôte. Étant données leur nature et leur luminosité intrinsèque très élevées, les supernovæ sont observables à des distances cosmologiques, et ce pendant plusieurs semaines.

Historiquement, les supernovæ ont tout d'abord été classées suivant leurs caractéristiques spectrales en deux groupes (Minkowski en 1941) selon qu'elles contenaient ou non la raie de l'hydrogène. Par la suite, une classification spectrale plus détaillée a été réalisée, permettant de dégager plusieurs sous-ensembles dans ces deux grands types de supernovæ (Elias en 1985), présentés en détail sur la figure 1. Ce n'est que plus tard (Filippenko en 1988) que l'on a découvert que le phénomène physique amenant à l'explosion des supernovæ de type Ia était de nature différente de celle des types Ib, Ic ou II.

De ce fait, on distingue deux grandes catégories de supernovæ : les supernovæ thermonucléaires (type Ia) et les supernovæ gravitationnelles.

FIGURE 1 - Classification spectroscopique des supernovæ en sous-groupes (Turatto, 2003).

1.1.1 Classification des supernovæ

Comme nous venons de le voir, on distingue les supernovæ d'un point de vue spectroscopique, elles sont de type I si elles ne possèdent pas d'hydrogène, ou de type II si elles en possèdent; et récemment du point de vue de leur mode d'explosion; on parle alors de supernovæ gravitationnelles ou thermonucléaires.

Les supernovæ gravitationnelles

Ce sont les plus connues. Il s'agit d'étoiles en fin de vie, dont le cœur inerte et trop gros conduit à l'effondrement de l'étoile sur elle-même. Les gaz subissent alors une onde de choc, se volatilisent puis forment un nuage interstellaire autour du résidu : une étoile à neutrons ou un trou noir selon la masse initiale de l'étoile. Elles libèrent en 24 heures autant d'énergie que notre Soleil durant ses trois derniers millions d'années, dont seulement un dix-millième se manifeste sous forme de lumière visible.

Les supernovæ thermonucléaires (type Ia)

Elles surviennent dans les systèmes binaires contenant une naine blanche (composée de carbone et d'oxygène). Celle-ci accrète de la matière de son compagnon, jusqu'à atteindre la masse limite de Chandrasekhar (1,4 masse solaire). Elle s'échauffe alors et explose en produisant du nickel, du silicium, du soufre et du calcium (nucléosynthèse explosive); toute la matière est dispersée dans l'espace et il ne reste plus rien au centre de la supernova. Les supernovæ la possèdent donc un intérêt sur le plan observationnel. En effet, une naine blanche dans un système binaire fournit une chandelle standard de l'Univers ou « photodiode cosmique calibrée » ; puisque c'est une étoile qui explose systématiquement entre 1,3 et 1,4 masses solaires.

De plus, le caractère explosif du phénomène, le fait que toute l'énergie soit libérée en un temps très court, le rend visible de très loin, à un redshift z = 1, 4 (on observe des supernovæ jusqu'à z = 2, mais il est très difficile de déterminer leur type).

FIGURE 2 – Kulkarni 2009. Ce diagramme représente la luminosité du phénomène en fonction de l'échelle de temps de ce phénomène lumineux. Alors que les SN gravitationnelles (core-collapse) sont dispersées, les SN Ia occupent une zone restreinte, ce qui permet de les utiliser comme chandelles standard. Certaines SN particulières sont très proches des SN Ia, comme par exemple SN2007ax, ce qui peut polluer l'échantillon.

Sur la figure 3(a) sont représentés des spectres typiques de supernovæ de type Ia, Ib, Ic et II à trois moments de leur évolution. Nous remarquons la présence très prononcée du silicium aux alentours de 6150 Å pour le spectre de SN Ia. Cette raie du silicium associée à celle du soufre (SII) aux alentours de 5500 Å (le « W » du soufre) seront très utiles pour différencier les SN Ia des autres types de supernovæ . Un autre moyen de les différencier est l'observation de l'évolution des courbes de lumière, présentées sur la figure 3(b).

FIGURE 3 – (a) Spectres des SN à différentes époques de leur évolution (Turatto, 2003).
(b) Courbes de lumière typiques des principaux types de supernovæ (Filippenko, 1997).

1.2 Chandelles standard : supernovæ de type Ia

Un objet astronomique dont la luminosité intrinsèque est connue est une chandelle standard. Suivant l'échelle de distance mise en jeu, on utilise :

- les étoiles variables RR Lyræ qui permettent des mesures à l'échelle de la Voie lactée ;
- les Céphéides qui permettent des mesures allant jusqu'à quelques dizaines de Mpc ;
- les SN Ia qui permettent de contraindre les valeurs des paramètres cosmologiques, c'est-à-dire de mesurer des distances présentant un décalage vers le rouge cosmologique z > 0,1, et jusqu'à z = 1,4.

1.3 Module de distance

Une des méthodes utilisées pour estimer la distance nous séparant d'un objet consiste à comparer le flux reçu de cette source (via la courbe de lumière) à sa luminosité intrinsèque supposée connue. En effet, le flux mesuré d'une source $f(erg.s^{-1}.cm^{-2})$ est directement relié à sa luminosité intrinsèque $L(erg.s^{-1})$ par

$$f = \frac{L}{4\pi d_L(z,\omega)^2} \tag{1}$$

Ainsi, en mesurant le flux f via la courbe de lumière et le redshift z, on a accès suivant l'équation 1 à la distance de luminosité d_L qui dépend du redshift et des paramètres cosmologiques $\omega = {\Omega_{\Lambda}, \Omega_M, \omega, H_0}$, et donc à ces paramètres.

La magnitude apparente d'un objet étant dépendante de sa distance, on introduit la magnitude absolue M qui est la magnitude qu'aurait l'objet s'il était situé à une distance de 10 pc, définissant ainsi le module de distance

$$\mu = m(f) - M(f) = 5 \log \frac{d_L(z,\omega)}{10 \ pc}$$
(2)

Disposant du module de distance et du redshift, on est en mesure de tracer le diagramme de Hubble, présenté sur la figure 4. Le paramètre de nuisance H_0L est déterminé à partir des données sur les SN proches.

FIGURE 4 – Diagramme de Hubble corrigé de manière empirique.

1.4 Spectres non corrigés du module de distance

Interprétation de la figure 5

Sur cette figure sont représentés les 132 spectres, non corrigés du module de distance. Ceci présente deux intérêts. Tout d'abord celui de ne pas privilégier une cosmologie plutôt qu'une autre. De plus, les supernovæ les plus proches nous apparaissent comme les plus lumineuses, ceci permet d'étaler les spectres sur l'échelle verticale.

Plus une supernova est loin, plus le rapport signal sur bruit est faible; plus le spectre est bruité. C'est bien ce que l'on observe : plus on considère des spectres du bas du graphe (c'est-à-dire faiblement lumineux, donc provenant de SN éloignées), plus ceux-ci sont bruités.

Plus une supernova est loin, plus son spectre, une fois corrigé du décalage vers le rouge, ce qui est le cas ici, présente une partie dans le bleu. D'où une légère pente inclinée ver la droite des spectres du bas vers ceux du haut.

On remarque également la signature de l'absorption par les poussières.

La raie NaID à environ 5900 Å est un marqueur des poussières. Les spectres qui la possèdent présentent également un flux moins important à petite longueur d'onde, car l'absorption est plus efficace dans le bleu. Ceci se traduit graphiquement par un spectre abaissé dans sa partie gauche.

Ce graphe est en échelle log, qui revient à travailler en magnitude, unité adaptée à des objets ayant des luminosités très différentes.

FIGURE 5 – Sur ce graphe du flux lumineux en fonction de la longueur d'onde sont représentés les spectres non corrigés du module de distance et corrigés du décalage vers le rouge cosmologique.

2 Le projet SNFactory

2.1 Objectifs

La collaboration SNFactory est actuellement composée de quatre laboratoires français (CRAL et IPNL à Lyon, LPNHE à Paris et CPPM à Marseille), deux équipes américaines (LBNL à Berkeley et Yale University) et une équipe allemande (Bonn University). Cette collaboration s'est donné pour objectif général le suivi spectrophotométrique de précision (quelques %) d'un large échantillon de SN Ia (environ 200) observées dans le flot de Hubble (0, 03 < z < 0, 08).

À terme, ces efforts permettront la réduction des incertitudes statistiques et systématiques sur la mesure des paramètres cosmologiques.

2.1.1 Principe de l'expérience SNFactory

Dans le projet SNFactory, on regarde de façon concurrente le nombre de photons qui arrivent d'une supernova Ia et d'une autre étoile. La technique opératoire consiste en la comparaison d'objets proches et lointains, certains sont cependant plus ou moins lumineux. On distingue plusieurs sources d'influence de la luminosité :

- l'énergie lumineuse est fournie par la désintégration du nickel 56, ce qui résulte en 15 à 20 % de variabilité,
- Les SN Ia se trouvent dans des galaxies hôtes, et subissent donc une extinction par les poussières du milieu interstellaire se trouvant sur la ligne de visée. Ces poussières absorbent plus dans le bleu que dans le rouge : c'est le rougissement, qui produit une distorsion spectrale.
- d'autres sources ont été envisagées (métallicité, asymétrie), mais leur effet sur le spectre n'a pas été mis en évidence.

FIGURE 6 – La collaboration SNFactory.

2.2 Observations et prises de données

2.2.1 Recherche de SN Ia

La recherche des SN Ia proches nécessite d'observer un champ beaucoup plus grand que celui des campagnes d'observation à grand décalage vers le rouge pour compenser la réduction de la profondeur de recherche. De 2004 à 2008, cette recherche s'est effectuée sur le télescope de 1,2 m du mont Palomar à Hawaii équipé de la caméra QUEST-II utilisant une stratégie d'observation non ciblée : la caméra grand champ balaie le ciel et considère tous les objets transitoires comme des candidats de SN Ia potentiels. Cette méthode permet d'effectuer une recherche non biaisée, contrairement à des méthodes qui se limitent aux galaxies d'un catalogue prédéterminé.

2.2.2 Suivi spectrophotométrique avec l'instrument SNIFS

Le suivi spectrophotométrique des SN Ia s'est effectué au Mauna Kea où se situe le télescope UH de 2,2 m sur lequel est monté le spectrographe à champ intégral SNIFS (Supernovæ Integral Field Spectrograph). Après détection et confirmation de leur type, préférentiellement avant leur pic de luminosité, leur suivi s'est fait presque tout au long de leur courbe de lumière, à raison d'une pose toutes les deux ou trois nuits.

L'instrument SNIFS est un spectrographe à champ intégral (IFS) permettant la spectrophotométrie d'une source ponctuelle. Comme le montre la figure 8, il est composé d'une trame de micro-lentilles permettant l'acquisition d'une information spectro-spatiale. Cette trame permet d'obtenir sur le CCD un nombre de spectres égal au nombre de micro-lentilles $(15 \times 15 = 225)$ et permet de couvrir un champ de 6" \times 6", contenant à la fois la supernova

FIGURE 7 – La SNFactory a recherché des SN de 2004 à 2008. Une fois les SN identifiées, on effectue leur suivi, ce qui est fait par le spectromètre SNIFS. Il présente 2 voies (B et R) afin de ne pas avoir de recouvrement de spectres. En effet, on acquiert des données allant de 3000 à 10 000 Å. Or, SNIFS est constitué d'une trame de 15×15 réseaux. Les données de la SNFactory constituent un lot unique au monde.

et sa galaxie hôte. Il est ainsi possible, mais délicat, de soustraire la composante galactique du spectre de la supernova. SNIFS est composé de deux canaux spectraux disposés de part et d'autre d'une lame dichroïque. Le spectrographe est ainsi composé d'une voie bleue (3200 Å à 5200 Å, échantillonnée à 2,4 Å) et d'une voie rouge (5100 Å à 10000 Å, échantillonnée à 2,9 Å).

En plus de la voie spectrographique, l'instrument SNIFS comprend une voie photométrique et une voie d'étalonnage. La voie photométrique est divisée en deux parties :

- un CCD est réservé à l'étude photométrique d'un large champ ($4, 5' \times 9'$) autour de l'objet et permet le suivi de l'absorption atmosphérique d'une nuit à une autre ;
- un autre CCD permet le guidage par le pointé d'une étoile guide.

2.2.3 Réduction de données

Les données brutes obtenues sur le CCD en sortie du spectrographe ne sont pas utilisables telles quelles, une procédure de réduction de données et d'étalonnage est nécessaire pour pouvoir les analyser.

2.2.4 Étalonnage du CCD

La première étape consiste à corriger les effets liés au détecteur au niveau du CCD. Il s'agit d'une succession de corrections réalisées à l'aide de différentes poses obtenues durant les observations. Les principales corrections sont :

FIGURE 8 – Schéma de principe du spectrographe à champ intégral à trame de microlentilles.

- la soustraction des *overscans*, qui mesurent un piédestal et ses fluctuations temporelles;
- les *poses de biais*, prises avant et après les nuits d'observation et qui permettent d'établir un modèle de la carte du niveau zéro à soustraire ;
- les poses de courant d'obscurité, d'une durée d'une heure, prises dans la journée avec l'obturateur fermé et qui permettent une estimation des effets thermiques du CCD et du bruit associé ;
- la soustraction de la lumière diffuse parasite estimée à partir de la zone interspectre.

2.2.5 Du CCD au cube étalonné puis aux spectres étalonnés en flux

Après soustraction de ces poses d'étalonnage, les 225 spectres sont extraits des voies bleue et rouge et ré-assemblés en deux cubes de données (x, y, λ) .

On a donc des cubes étalonnés spatialement, il reste à extraire le spectre des sources ponctuelles (SN Ia, étoiles étalons) et les corriger des effets atmosphériques et de la transmission du télescope.

Les sources ponctuelles sont extraites de chaque cube de données par l'ajustement d'une fonction d'étalement de point (PSF pour *Point Spread Function*) à trois dimensions sur fond uniforme. Le modèle PSF est un modèle analytique décrit par la somme d'une gaussienne (pour le cœur) et d'une courbe qu'on appelle moffat (pour les ailes).

Si la supernova appartient à une galaxie hôte, le fond structuré en résultant doit être soustrait au cube de données.

3 Chandelles quasi-standard et indicateurs spectraux

3.1 Indicateurs spectraux

Après l'explosion de la supernova, deux phénomènes concurrents vont mener à un maximum de luminosité pour la SN. D'un côté, la dilution du flux de photons résultant de l'expansion a pour effet de diminuer l'opacité, ce qui contribue à augmenter la luminosité. De l'autre, les photons provenant de la désintégration du ⁵⁶Ni, leur nombre décroît exponentiellement (la demi-vie du ⁵⁶Ni est de 6,07 jours), ce qui tend à diminuer la luminosité. Le maximum de luminosité est atteint entre le 10^e et le 15^e jour. Ce phénomène est représenté sur les courbes de lumière.

Les indicateurs spectraux sont mesurés sur les spectres après correction du rougissement dû à la présence de poussières dans la Voie lactée. On utilise des spectres proches du maximum de luminosité de manière à avoir un flux maximal, donc un rapport signal sur bruit plus élevé et des mesures plus précises. Les indicateurs spectraux les plus couramment employés lors des analyses spectrales de SN Ia sont représentés sur la figure 11 et détaillés par la suite.

Pour contrer ces variabilités, on applique une correction empirique (SALT2) (Guy, 2007) qui consiste en l'ajustement de la courbe de lumière, de manière à réduire la dispersion au niveau du maximum. La méthode SALT2 s'appuie sur trois paramètres (m_B , x_1 et c) dont un seul intrinsèque : le paramètre de stretch x_1 , qui représente la largeur de la courbe de lumière. Plus la SN est brillante, plus sa courbe de lumière varie lentement, c'est ce qu'on appelle « brighter-slower ».

Le paramètre de couleur c est un mélange d'intrinsèque et d'extrinsèque, c'est le « brighterbluer » : plus la SN est brillante, plus son spectre est décalé vers le bleu.

On utilise alors ces trois paramètres pour minimiser les résidus au diagramme de Hubble, selon la formule

$$\mu_B^i = m_B^i - M_B + \alpha x_1^i - \beta c^i, \tag{3}$$

ce qui permet de tracer le diagramme de Hubble présenté sur la figure 4.

3.2 Indicateurs spectraux : résultats antérieurs

Je suis partie des résultats fournis par Nicolas Chotard. Comme le montre la figure 10, Nicolas Chotard a mis en évidence que l'indicateur du silicium EWSiII4000 (donné sur un spectre) varie comme le paramètre de stretch x_1 (donné sur une courbe de lumière). Ces deux paramètres sont covariants, ce qui est très important car cela signifie qu'un spectre contient autant d'information qu'une courbe de lumière.

3.2.1 Largeurs équivalentes

La largeur équivalente, représentée sur le figure 11, correspond à l'aire comprise entre le spectre et deux pics, normalisée par la hauteur du flux du continuum. C'est la largeur qu'aurait la raie si elle descendait jusqu'à zéro. Elle est définie par l'intégrale

$$EW = \int_{\lambda_1}^{\lambda_2} (1 - \frac{\phi_\lambda(\lambda)}{\phi_c(\lambda)}) d\lambda$$
(4)

où ϕ_{λ} est le flux du spectre et λ_1 et λ_2 sont les longueurs d'onde des positions correspondant aux maxima situés de part et d'autre de la raie, utilisé pour définir le pseudo-continuum, de flux ϕ_c défini par

$$\phi_c = \lambda \frac{\phi_{\lambda_2} - \phi_{\lambda_1}}{\lambda_2 - \lambda_1} + \frac{\phi_{\lambda_1} \lambda_2 - \phi_{\lambda_2} \lambda_1}{\lambda_2 - \lambda_1}$$
(5)

3.2.2 Vitesses de raies

La vitesse de raie, représentée sur le figure 11, est le rapport entre le décalage Doppler et la longueur d'onde au repos λ_0 :

$$v = c \frac{\Delta \lambda}{\lambda_0} \tag{6}$$

FIGURE 9 – Comparaison des courbes de lumière avant et après correction. On passe d'une dispersion de 40 % à 15 %.

La vitesse de raie correspond en première approche aux vitesses d'expansion de l'enveloppe au rayon contenant l'élément correspondant à λ_0 .

Par la suite, je n'ai utilisé que les largeurs équivalentes et les vitesses de raies, détaillés sur la figure 30. J'ai travaillé dans un espace à 10 dimensions faisant intervenir 9 largeurs équivalentes et une vitesse de raie (celle du silicium à 6355 Å).

On définit deux autres indicateurs : le rapport d'absorption et le rapport de flux, non abordés ici.

FIGURE 10 – On a représenté les 3 paramètres intervenant dans la méthode SALT2, en fonction des largeurs équivalentes du calcium HK et du silicium à 4000 Å. Le graphe 2^e ligne, 2^e colonne met en évidence la corrélation entre paramètre de stretch x_1 et largeur équivalente du silicium à 4000 Å. Comparativement, aucune corrélation n'apparaît entre x_1 et EWCaIIHK. (HdR Gangler, 2011).

FIGURE 11 – Représentation des quatre principaux types d'indicateurs spectraux.

FIGURE 12 – Spectre typique de SN Ia au maximum de luminosité et ses raies spectrales caractéristiques. On y retrouve la largeur équivalente (équation 4), la vitesse de raie (équation 6), le rapport d'absorption et le rapport de flux.

Deuxième partie Développement d'une méthode de sélection des supernovæ

4 Tri des supernovæ

4.1 cadre de travail

Comme on l'a vu, on utilise les supernovæ en cosmologie pour leur qualité de chandelles standards. Cependant, ces dernières présentent des variabilités qu'il est nécessaire de contrôler. On analyse ces variabilités grâce à la PCA (Analyse en Composantes Principales, détaillée plus loin), mais ce procédé présente l'inconvénient d'être sensible aux points aberrants. J'ai donc mis au point une méthode permettant de sélectionner les SN de manière plus précise que ce qui existait déjà au sein de la collaboration.

Dans les analyses de type statistique sur les SN, on peut avoir des « intrus », qui vont biaiser les conclusions. Ceux-ci peuvent provenir d'erreurs de mesure, ou bien de SN appartenant à des classes différentes. Après un classement manuel, j'ai procédé à un classement automatique, détaillé par la suite.

4.2 Sélection des supernovæ

À partir du lot initial de 132 SN, j'ai rejeté (par une procédure automatique) toutes celles qui ne présentaient pas de spectre à +/- 2,5 jours du maximum (déterminé par SALT2). J'ai abouti à un lot de 107 SN. En effet, 22 SN n'avaient pas de tel spectre et 3 ne présentaient qu'une seule voie spectroscopique (B ou R).

Sélection manuelle

J'ai alors passé en revue ces supernovæ grâce à un système automatisé. Pour chacune, on dispose de 6 spectres fournis par « controlplots », un spectre « iron zone » et un spectre « oxygen zone ». Les indicateurs spectraux sont calculés en fonction des positions des pics, or sur certains spectres, une part d'incertitude subsiste. Il faut donc déterminer, de manière objective certes, si l'informatique a relativement bien positionné ces pics ou non.

Pour les iron zone, il est parfois ambigu de décider quel pic choisir, entre celui de gauche ou de droite, de part et d'autre du « creux ». Cette difficulté est particulièrement bien illustrée sur la figure 13. Pour les oxygen zone, le pic de gauche est difficile à déterminer car il n'est pas vraiment marqué, il s'agit plutôt d'un continuum.

J'ai répertorié les SN dont certains spectres posaient problème.

FIGURE 13 – Graphe dans la zone du fer pour la SN2008ec; on voit que la valeur de la largeur équivalente EWFe4800 dépend fortement du choix des pics latéraux.

5 Erreurs et covariance

5.1 Calcul des distances

À partir du lot de 107 supernovæ, j'ai calculé la distance pour chacune d'entre elles, via un calcul de χ^2 .

Ayant 10 paramètres, on s'attend à ce que la distance au carré suive une loi de χ^2 à 10 paramètres, donc à ce que la moyenne vale 10, ce qui est le cas, et la variance 20, ce qui n'est pas le cas. Il suffit en effet de quelques supernovæ très éloignées, dont la distance est grande, pour élever cette valeur. J'ai donc supprimé tous les candidats dont la distance est supérieure à $\chi^2 + 3\sigma = 10 + \sqrt{20}$.

J'obtiens une nouvelle liste sur laquelle j'itère le procédé, jusqu'à ne plus avoir de distance supérieure à cette valeur seuil. Au final, j'obtiens un lot de 80 supernovæ.

Le rejet de SN est obtenu grâce à un χ^2 , calculé avec et sans incertitudes de mesure.

Calcul

$$\chi^2 = \sum E w_i^T V^{-1} E w_i \tag{7}$$

où V = cov(Ew) est la covariance de l'échantillon et Ew un vecteur des indicateurs de longueur 10, portant sur la SN *i*, calculé en soustrayant à chaque valeur la moyenne par colonne.

$$\chi_{err}^{2} = \sum E w_{i}^{T} [V + v_{i}]^{-1} E w_{i}$$
(8)

où v_i est la covariance des erreurs de mesure.

La matrice de pondération V^{-1} est calculée de manière itérative de sorte que seules les SN du lot qu'on appellera le « Gold sample » soient prises en compte.

Le critère de rejet porte sur les grandeurs :

- χ^2 : mesure la distance au centre de la distribution (normalisé par la covariance); χ^2_{err} : teste si la SN est compatible avec le centre de la distribution (en prenant en compte les erreurs de mesure);

permet de distinguer les SN à l'écart du fait d'erreurs de mesure, ou du fait d'une réelle différence. En effet, si la distance d'une SN, élevée par le calcul du χ^2 , est ramenée à une valeur inférieure au seuil des 2σ par le calcul du χ^2_{err} , cette SN est trop entachée d'erreurs pour pouvoir la qualifier d'intrus.

On obtient 4 groupes :

- Gold sample de 80 SN (utilisées dans la mesure de V) critère : $\chi^2 < 3\sigma_{cut}$;
- 13 SN intrus dues aux erreurs de mesure critère : $\chi^2 > 3\sigma_{cut}$ et $chi_{err}^2 < 2\sigma_{cut}$ Ces SN ont des barres d'erreurs tellement grandes qu'on ne peut pas conclure, du fait qu'elles sont à l'écart, qu'elles sont de vrais intrus;
- 6 SN intrus entre 2 et 3 σ critère : $\chi^2 > 3\sigma_{cut}$ et $3\sigma_{cut} > chi_{err}^2 > 2\sigma_{cut}$ Ces SN se positionnent à l'écart tout en présentant des barres d'erreurs correctes ;
- 7 intrus confirmés critère : $\chi^2 > 3\sigma_{cut}$ et $chi_{err}^2 > 3\sigma_{cut}$ Au-delà de 3 σ , on est certain que ces SN sont différentes des autres ; elles sont candidates pour former des sous-groupes.

6 Détermination des aggrégats

Méthode de classification

Des paires de SN sont fabriquées, le critère étant que deux SN plus proches l'une de l'autre que du centre de la distribution forment une paire. Ensuite, on regroupe les paires ayant une SN en commun.

On ne considère que les aggrégats présentant une SN dans l'échantillon des intrus confirmés, c'est-à-dire ceux pour lesquels la distance calculée avec et sans les erreurs de mesure est supérieure au seuil de 3σ . Cette méthode aboutit à la mise en évidence de quatre aggrégats, dont les spectres sont représentés sur les figures 14, 15, 16, 17. La figure 30 présente les plots dans l'espace des indicateurs.

On travaille dans un espace à 10 dimensions puisqu'on dispose de 10 indicateurs. Afin de se le représenter, on passe par une série de graphes d'un indicateur en fonction de tous les autres. Un exemple est fourni sur la figure 30, les autres figurent en annexe.

Aggrégat 1 **6.1**

L'aggrégat 1 regroupe 3 SN dont les caractéristiques sont les suivantes. Elles sont très lumineuses et présentent des raies faiblement marquées. Leur niveau d'ionisation est élevé et elles sont chaudes. On remarque une très faible raie H & K du calcium et un faible EWSIIW. Il se pourrait que cet aggrégat soit la prolongation d'une variabilité naturelle.

TABLE 1 – Liste des aggrégats

Agrégat 1	sur-lumineuses	SN2006do	EWSIIW mal mesuré, rejetée manuellement de l'aggrégat
	EWSIIW et EWCaIIIR faibles	SNF20070528-003	
	queue de distribution d'une variabilité natu- relle ?	SNF20070803-005	
		SNF20080723-012	
Aggrégat 2	EWCaIIIR et EWFe4800 faibles	SN2007cq	
	EWMgII élevé	SNF20060915-006	faible rapport S/N
		SNF20080815-017	reste un intrus sans EW- CaIIIR, mauvaise calibra- tion dans l'UV
Aggrégat 3	EWSiII5972 et EWCaIIIR élevés	SN2007fr	
	sous-lumineuses, autre bout de la distribution ?	SN2009hs	
« Aggrégat » 4	EWSIIW un peu faible, EWOI7773 un peu élevé detached calcium feature faible vitesse du silicium	SNF20080913-031	n'est plus un intrus sans EWCaIIIR

FIGURE 14 – Aggrégat des super-lumineuses. Très chaudes, lumineuses, niveau d'ionisation élevé, raies faibles.

6.2 Aggrégat 2

L'aggrégat 2 se caractérise par des largeurs équivalentes du calcium dans l'infrarouge et du fer Fe4800 faibles, et une largeur équivalente du magnésium élevée (cf les plots de EWMgII, EWFe4800 et EWCaIIIR en fonction de EWCaIIHK). Leurs vitesses sont similaires, mais restent dans la moyenne. On observe un gros pic au niveau des raies H & K du calcium (raie étroite et peu profonde).

FIGURE 15 – Aggrégat 2. EWCaIIIR et EWFe4800 faible, gros pic dans CaIIHK, raies étroites et peu profondes. Lorsqu'on retire EWCaIIIR, SNF20080815-017 reste un intrus.

6.3 Aggrégat 3

L'aggrégat 3 est la catégorie des sous-lumineuses (raies plus creusées, étroites et très profondes). On observe un gros pic au niveau des raies H & K du calcium. SN2009hs est à très basse vélocité (décalage de son spectre vers les grandes longueurs d'onde). (SN2009hs présente-t-elle un problème de redshift, sachant qu'en 2009, les SN observées étaient des SN proches ?). La largeur équivalente SiII5972 élevé et celle de CaIIIR aussi, sur la droite (raies profondes).

On remarque une légère distorsion de la largeur équivalente du silicium à 4000.

Cet aggrégat pourrait être le pendant de l'aggrégat 1, en tant qu'autre bout de la prolongation. Il pourrait y avoir un continuum de l'aggrégat 1 à 3.

6.4 «Aggrégat» 4

L'aggrégat 4 présente un CaIIIR élevé sur la gauche (associé à une vitesse élevée « detached calcium feature »), un EWSIIW un peu faible et un EWOI7773 un peu élevé.

Si on enlève l'indicateur EWCaIIHK, la SNF20080815-017 est toujours intrus. Si on enlève l'indicateur EWCaIIIR, la SNF20080913-031 n'est plus intrus.

FIGURE 16 – Aggrégat 3. Sous-lumineuses, EWSiII5972 et EWCaIIIR élevés.

FIGURE 17 – SN normale avec « detached feature ». EWOI7773 un peu élevé, EWOI7773 un peu élevé, EWSiII4000 et EWSiII6355 un peu faibles. Lorsqu'on retire EWCaIIIR, SNF20080913-031 n'est plus un intrus.

7 Analyse en Composantes Principales (PCA)

7.1 Principe

La PCA permet de diagonaliser la matrice de covariance. Son intérêt est de contenir le maximum d'information dans son premier vecteur propre, puis un peu moins dans son deuxième, et ainsi de suite. Ici, les trois premiers vecteurs propres contiennent 82 % de la variabilité.

7.2 Valeurs et vecteurs propres

TABLE 2 – Trois premiers vecteurs propres de la PCA. Le premier vecteur propre fait apparaître une corrélation entre EWSiII4000 et EWMgII, le deuxième vecteur propre entre EWCaIIHK et EWOI7773, le troisième vecteur propre montre l'importance de la vitesse du silicium à 6355 Å.

Indicateurs	Vecteurs propres		
EWCaIIHK	0.24	0.43	0.05
EWSiII4000	0.50	-0.32	0.04
EWMgII	0.38	0.02	0.08
EWFe4800	0.28	-0.19	-0.04
EWSIIW	0.29	0.31	-0.02
EWSiII5972	-0.13	0.11	0.04
EWSiII6355	-0.27	0.23	0.07
EWOI7773	-0.35	0.43	0.00
EWCaIIIR	-0.42	-0.58	0.02
vSiII6355	0.01	0.02	-0.99

TABLE 3 – Vecteurs propres. Les trois premiers vecteurs propres contiennent 82 % de la variabilité.

Vecteur propre	Valeur propre
1	0.471
2	0.263
3	0.090
4	0.055
5	0.037
6	0.027
7	0.022
8	0.020
9	0.013
10	0.002

FIGURE 18 – Vecteurs propres les plus significatifs.

FIGURE 19 – Vecteurs propres les moins significatifs.

Conclusion

En cosmologie, les supernovæ sont importantes et on a besoin de les classer selon leurs caractéristiques spectrales. J'ai apporté à la collaboration SNFactory un code qui sélectionne de manière plus précise les supernovæ.

J'ai montré que sur l'échantillon de 107 SN, 4 sous-classes se dessinent :

- la classe des 91-T like;
- la classe des sous-lumineuses;
- la classe des 2007-fr like;
- la classe des SN normales présentant le « detached feature ».

Remarque :

Les 4 SN suivantes, de l'échantillon auxiliary se retrouvent dans le gold sample :

- SN2005ki;
- SN2007qe;
- SN2009ig;
- SNF20061009-008.

Les 3 intrus confirmés suivants n'étaient pas dans l'échantillon auxiliary :

- SN2007cq;
- SNF20070803-005;
- SNF20080913-031.

Il faudrait maitenant reprendre les calculs fait par Nicolas Chotard en tenant compte des intrus, c'est-à-dire en les excluant du calcul.

A Annexes

A.1 Tableau récapitulatif des 132 SN

Liste des 80	Liste des 107	Liste des 110	Liste des 132	Commentaire
DTE00dla	Liste des 107	Liste des 110	Liste des 152	commentane
PTEO0 1 1				
PTF09dni				
	PTF09dnp			
PTF09fox				
PTF09foz				
SN2005bc				
SN2005cf				
		SN2005cg		
			SN2005di	
SN2005e1			brizoobai	
SN2005bc				
SN2005h:				
SIN20050j	CN12005'			
CN120051 '	51N200511			
SIN2003KI				Siv auxinaire dans le Gold sample
SN2006cj				
SN2006dm				
	SN2006do			out complet scan visuel
		SN2007bd		
SN2007cb				
	SN2007cq			SN non auxiliaire intrus confirmé
	SN2007fr			
SN2007kk				
SN20071e				
SN2007na				
SN2007ge				SN auxiliaire dans le Gold sample
SN2008ec				Si v duxinario dans lo Gold sample
511200000	SN2000ha			
SN2000:~	5112009118			SN auviliaire dans la Cald samula
SIN20091g				Siv auxinaire dans le Gold sample
SNF20050624-000				
SNF20050728-000				
	SNF20050728-006			
		SNF20050821-007		
SNF20050927-005				
			SNF20051003-004	
			SNF20051113-000	
SNF20060511-014				
	SNF20060512-001			
SNF20060521-008				
SNF20060526-003				
SNF20060530-003				
	SNF20060618-014			cosmiques, rejetée scan visuel
SNF20060618-023	511120000010 011			essinques, rejetee sean visuer
5111 20000010 025			SNF20060618-012	
SNE20060621-015			5141 20000010-012	
SNF20000021-015				
SINF20000907-000				
5INF20060908-004				
	SNF20060912-000		0.000	
			SNF20060912-004	
	SNF20060915-006			
			SNF20060916-002	
SNF20060919-007				
SNF20061009-008				SN auxiliaire dans le Gold sample
			SNF20061011-005	
SNF20061020-000				
SNF20061021-003				
SNF20061024-000				
SNF20061111_002				
5141 20001111-002			SNE20070326-012	
SNE20070220 024			5141/20070520-012	
SINF20070330-024			SNE20070221 014	
SNE20070402-001			SINF20070331-014	
SINF20070403-001				
5NF20070420-001	ANTERCO 70 10 1 00 1			
	SNF20070424-003			
SNF20070427-001				
SNF20070506-006				
	SNF20070528-003			out pour CaIIHK scan visuel

SNF20070531-011				
SNF20070630-006				
SNF20070701-005				
SNF20070712-000				
	SNF20070712-003			
		SNF20070717-003		
		SNF20070725-001		
SNF20070727-016				
	SNF20070802-000			
	SNF20070803-005			SN non auxiliaire intrus confirmé
SNF20070806-026				
SNF20070810-004				
	SNF20070817-003			raffinage algorithme OI, scan visuel
CNE20070020 000	SNF20070818-001			
SINF20070820-000			SNE20070825 001	
SNE20070831-015			SINF20070823-001	
SNF20070831-013				
SNF20070902-021				
51(120070702021			SNF20070912-000	
			SNF20071001-005	
			SNF20071003-004	
SNF20071003-016				
SNF20071015-000				
SNF20071021-000				
	SNF20080323-001			
			SNF20080323-009	out complet mais spectre bruité, scan visuel
SNF20080507-000	C) 15 0 0 0 0 5 1 0 0 0 1			
	SNF20080510-001		CNIE20000512 000	out complet, scan visuel
SNE20080512-010			SNF20080512-008	
SINF20080512-010				
SINF20080514-002 SNF20080516.000				
51120080510-000	SNF20080516-022			
SNF20080522-000	5111 20000510 022			
SNF20080522-011				
SNF20080531-000				
SNF20080610-000				
SNF20080612-003				
SNF20080620-000				
SNF20080623-001				
SNF20080626-002				
	SNF20080707-012			
CNIE20000717.000	SNF20080714-008			
SNF20080717-000				raia d'absorption calentique N-ID
SINF20080720-001	SNE20080722-012			rate u absorption galactique NaID, scan visuel
SNF20080725-004	5111 20000725-012			
5111 20000725-004			SNF20080731-000	
SNF20080803-000			51.1 2000751 000	
SNF20080810-001				
	SNF20080815-017			
SNF20080821-000				
SNF20080822-005				
SNF20080825-010				
			SNF20080908-000	
SNF20080909-030				
SNF20080910-007				
	SNF20080913-031			SN non auxiliaire intrus confirmé
SNF20080914-001				
SNF20080918-000				
SNF20080918-004				
5111 20000717-001	SNF20080919-002			
SNF20080920-000	5111 20000 10-002			
			SNF20080926-009	
	I			

A.2 Graphes des 10 indicateurs les uns en fonction des autres

FIGURE 20 – Tous les indicateurs en fonction de CaIIHK.

FIGURE 21 – Tous les indicateurs en fonction de SiII4000.

FIGURE 22 – Tous les indicateurs en fonction de MgII.

FIGURE 23 – Tous les indicateurs en fonction de Fe4800.

FIGURE 24 – Tous les indicateurs en fonction de SIIW.

FIGURE 25 – Tous les indicateurs en fonction de SiII5972.

FIGURE 26 – Tous les indicateurs en fonction de SiII6355.

FIGURE 27 – Tous les indicateurs en fonction de OI7773.

FIGURE 28 – Tous les indicateurs en fonction de CaIIIR.

FIGURE 29 – Tous les indicateurs en fonction de vSiII6355.

A.3 8 spectres repérés lors des scans visuels

FIGURE 30 – Scan visuel : 8 spectres semblent présenter un caractère anormal.