Interférométrie des tavelures

Tavélographie

Contexte

Buts

- Retrouver le pouvoir de résolution théorique
- Observation d'étoiles doubles non résolues
 - → Séparation
 - → Rapport des intensités
- Détermination du diamètre de Io

Auto-corrélation de l'image

Tavelures

La turbulence dégrade le pouvoir de résolution.

$$\frac{\lambda}{D} \rightarrow \frac{\lambda}{R_0}$$

$$PR_{th} = 0.16''$$

PR (
$$\lambda$$
 Cyg) = 1,65"

$$\lambda = 650 \text{ nm}$$

Dispositif d'observation

Chaîne de traitement

Masque de sélection du signal

sur toutes les images et sur tous les fonds de ciel de manière analogue.

Traitement des données

Traitement des données

Fonction de transfert optique

Traitement des données

Avec et sans division par la référence

Masques et filtres, division

Un signal avec des perturbations

Un signal avec des perturbations

Distribution spectrale de λ Cyg 2000 images de 10ms

Ces perturbations proviennent de la caméra CCD.

Un signal avec des perturbations

Distribution spectrale obtenue en coupant les guirlandes

Atténuation des basses fréquences

Distribution spectrale FTS avec rotation

Coupe perpendiculaire sur la FTS au signal sinusoïdal

Atténuation des basses fréquences

En atténuant les basses fréquences, on fait ressortir l'information contenue dans les fréquences moyennes. L'image finale est plus nette.

Résultats

Mesure du rapport des intensités

mu 1 Cyg – 200 ms – 1000 poses

Médiane sur les lignes

Rapport des intensités sur la FTS : A/B = f(r1,r2)

Ecart de magnitude (médiane sur les rapports trouvés) :

1,76 mag r (WDS : 1,43)

Mesure du rapport des intensités

2 étoiles d'intensité A et B

$$I = A \times \delta(x - \frac{s}{2}) + B \times \delta(x + \frac{s}{2})$$

$$\label{eq:transformation} \begin{picture}(150,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100}}$$

$$|\tilde{I}|^2 = \underbrace{A^2 + B^2}_{r_1} + \underbrace{2AB}_{r_2} \, \cos(2\pi\nu s)$$
 movenne amplitude

$$r = \frac{A^2 + B^2}{4AB} \quad \Rightarrow \quad \frac{A}{B} = 2r + \sqrt{4r^2 - 1}$$

Différence de magnitude :

$$\Delta$$
mag = 2,5 log A/B

Mesure de la séparation

Séparation: 0,915 "

WDS: 0,914"

Détermination du diamètre de Io

Image auto-corrélée : fonction de Bessel

Diamètre mesuré : 0.8 " ou 1.24 " ... ?

Littérature : 1.20 " (maximum)

Modélisation d'un système triple

Première composante éloignée : cos de période courte 0,915 "

Deuxième composante serrée : cos de longue période (une seule période dans la FTO) ~ 0,1 "

Modélisation d'un système triple

Afin de modéliser le système triple observé de λ Cyg, nous avons employé un programme d'optimisation réalisant un ajustement non-linéaire des moindre carrés (par la méthode de Levenberg-Marquardt) :

$$X^{2} = \sum (F(data, FTS \cdot Spectre\ Etoile\ triple) - V)^{2}$$

Où

V correspond à un jeu de valeurs de séparations, de magnitudes, et angles de position recherché,

data correspond à la distribution spectrale du système triple observé,

FTS correspond à la distribution spectrale d'une étoile simple servant comme référence.

On suppose que le jeu de valeurs initiales est relativement proche de la réalité et on cherche à augmenter l'exactitude de notre modèle.

On peut ainsi construire un modèle du système triple, sans faire diverger l'intensité des hautes fréquences et sans employer de filtre ou de fonction atténuant les basses fréquences.

Autres techniques

Shift and add

mu 1 Cyg – 200 ms – 1000 poses

Recentre chaque image sur le speckle le plus brillant.

Seeing = 1,04 "

Résultats

Objet	Séparation / littérature	Delta mag (3 sigma)/ littérature	Seeing	commentaire
λ Cyg	0,915 " WDS 0,914 "	1,72 WDS 1,53	0,9 "	
μ1 Cyg	1,68 " WDS 1,70 "	1,75 +/- 0,12 WDS 1,43	1,04 "	
HIP 114187	8,06 " WDS 8,3 "	WDS 1,60		Grande séparation
т Tau 200 ms	WDS 0,3 "	WDS 2,64	1,04 "	Pas assez haut sur l'horizon → dispersion
т Tau 50 ms			0,83 "	
126 Tau 200 ms	WDS 0,2 "	WDS 1,52	0,78 "	
126 Tau 50 ms			1,00 "	
lo	WDS 1,20 "	1	1,3 "	Temps de pose cumulé trop court
Europe	WDS 1,05 "	1	1,26 "	
72 peg	0.58 +/- 0.02 / WDS 0.6			
lo	1,24 " WDS 1,20 "	1		

Annexes 28